China manufacturer Long Service Life CZPT Gear Coupling for Cement gear patrol

Product Description

Key attributes

Other attributes

Applicable Industries

Manufacturing Plant, Construction works , Energy & Mining

 

Weight (KG)

3000

 

Showroom Location

None

 

Video outgoing-inspection

Provided

 

Machinery Test Report

Provided

 

Marketing Type

Ordinary Product

 

Warranty of core components

Not Available

 

Core Components

Gear, Ring Gear

 

Place of CHINAMFG

ZheJiang , China

 

Condition

New

 

Warranty

1year

 

Shape

Ring Gear

 

Standard or Nonstandard

Nonstandard

 

Tooth Profile

Helical Gear,spur gear

 

Material

Steel

 

Processing

Forging

 

Pressure Angle

custom

 

Brand Name

TS

 

Product Name

Large Ring Gear

 

Module No.

5-180

 

Process

Milling,hobbing

 

Surface treatment

as request

 

Heat treatment

Q&T

 

Application

Industry machinery,transmission equipment

 

Standard

DIN ANSI ISO

 

Certificate

ISO

 

OEM Service

YES

 

Delivery time

15-60days

 

Packaging and delivery

Packaging Details

Package adapting to CHINAMFG transport

 

Port

ZheJiang ,HangZhou

 

Supply Ability

Supply Ability

5 Piece/Pieces per Month

 

 

OUR WORKSHOPS

 

OUR EQUIPMENTS
Technology Process

Material

Carbon steel,Alloy steel

Structure

Forging,casting

Type of gear

spur gear,helical gear,Planetary Gear

Heat treatment

Quenching and tempering

Process 

forging, rough machining, QT, finish machining

Main equipments

hobbing,CNC machine

Module

up to 200

Precision of gear

Grinding ISO Grade 5-7 & Hobbing ISO Grade 8-9

Inspection

Raw material inspection, UT,physical property test,dimension inspect

Application

Mining machinery, mill, kiln and other equipment

OUR CERTIFICATE
OUR CUSTOMER FEEDBACK
CONTACT 

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Application: Industry
Hardness: Hb190-Hb300
Gear Position: External Gear
Manufacturing Method: Cast Gear
Toothed Portion Shape: Spur Gear
Material: Steel
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

crown gear

What is the role of a crown gear in power transmission?

A crown gear plays a crucial role in power transmission within a mechanical system. Let’s explore the role of a crown gear in power transmission:

  • Power Distribution:

Crown gears are used to transfer power between two intersecting shafts. When a crown gear meshes with other gears in a system, it enables the transmission of rotational energy from the input shaft to the output shaft. This power distribution mechanism allows the system to efficiently transfer and control the flow of mechanical energy.

  • Torque Transmission:

One of the primary functions of a crown gear is to transmit torque. Torque refers to the rotational force applied to an object. When the input shaft rotates, the crown gear engages with other gears, and through the interaction of their teeth, torque is transmitted from the input shaft to the output shaft. Crown gears are designed to handle high torque loads, ensuring effective power transmission within the system.

  • Speed Reduction or Increase:

In addition to power distribution and torque transmission, crown gears also contribute to speed reduction or increase in a system. By meshing with gears of different sizes or gear ratios, the rotational speed of the output shaft can be adjusted relative to the input shaft. When the crown gear engages with a smaller gear, it results in speed reduction, providing higher torque output. Conversely, when it meshes with a larger gear, it leads to speed increase, sacrificing torque for higher rotational speed.

  • Directional Change:

Crown gears can also facilitate a change in rotational direction within a power transmission system. By meshing with other gears, they can redirect the rotational motion from one shaft to another shaft oriented at a different angle. This ability to change the direction of power transmission allows for the efficient transfer of rotational energy in systems with complex configurations.

  • Efficiency and Load Distribution:

Crown gears are designed to optimize power transmission efficiency. Their tooth profile and engagement properties minimize energy losses due to friction, ensuring efficient transfer of mechanical energy. Additionally, crown gears distribute the load evenly across their teeth, reducing stress concentrations and promoting longevity and reliability in the system. By efficiently transmitting power and evenly distributing loads, crown gears contribute to the overall performance and durability of the power transmission system.

In summary, the role of a crown gear in power transmission involves power distribution, torque transmission, speed adjustment, directional change, and the promotion of efficiency and load distribution. Crown gears are essential components that enable the controlled transfer of mechanical energy, allowing for effective operation and performance of various mechanical systems.

crown gear

How do crown gears contribute to power distribution in gear arrangements?

Crown gears play a significant role in power distribution within gear arrangements, ensuring efficient and balanced transmission of power. Let’s explore how crown gears contribute to power distribution:

  • Load Sharing:

Crown gears are often used in gear arrangements where multiple gears are present. In such arrangements, crown gears help distribute the power load among the gears. By sharing the load, each gear experiences a reduced load compared to if it were to carry the entire power load alone. This load sharing capability helps prevent overloading and excessive stress on individual gears, promoting more reliable and efficient power distribution.

  • Equal Torque Transfer:

Crown gears facilitate equal torque transfer among interconnected gears. When a crown gear meshes with another gear, the torque applied to the crown gear is transmitted to the meshing gear. Due to their tooth orientation and large contact area, crown gears enable a more uniform distribution of torque, ensuring that the torque is evenly transferred from one gear to another. This balanced torque distribution helps maintain smooth operation and prevent gear failures due to torque overload.

  • Elimination of Backlash:

Crown gears help reduce or eliminate backlash in gear arrangements. Backlash refers to the slight clearance or play between the teeth of meshing gears. It can cause inaccuracies, vibrations, and noise in the system. Crown gears, with their perpendicular tooth orientation and optimized meshing characteristics, minimize backlash and ensure a tight and precise engagement between gears. This tight meshing eliminates power losses associated with backlash and contributes to more efficient power distribution.

  • Better Load Distribution:

Due to their curved tooth profile and larger contact area, crown gears provide improved load distribution across the gear teeth. When power is transmitted through crown gears, the load is distributed over a greater number of teeth compared to other gear types. This even load distribution results in reduced stress concentrations on individual teeth, enhancing the gear’s load-carrying capacity and promoting uniform power distribution throughout the gear arrangement.

  • Enhanced System Efficiency:

By facilitating load sharing, equal torque transfer, backlash elimination, and improved load distribution, crown gears contribute to enhanced system efficiency. The balanced power distribution achieved through crown gears helps minimize power losses, reduce energy wastage, and optimize the overall efficiency of the gear arrangement. This improved efficiency translates into better performance, reduced energy consumption, and increased productivity in various mechanical systems.

In summary, crown gears contribute to power distribution in gear arrangements through load sharing, equal torque transfer, elimination of backlash, better load distribution, and enhanced system efficiency. These characteristics make crown gears an integral part of gear systems, ensuring reliable and efficient power transmission in a wide range of applications.

crown gear

How do crown gears contribute to transmitting motion and power?

Crown gears play a significant role in the transmission of motion and power in mechanical systems. Let’s explore how crown gears contribute to these essential functions:

  • Directional Change:

One of the primary contributions of crown gears is facilitating a change in motion direction. By meshing a crown gear with other gears, the rotational motion can be redirected by 90 degrees. This directional change capability enables the transmission of motion in different directions within a mechanical system, allowing for the desired movement and positioning of components.

  • Meshing and Torque Transfer:

Crown gears engage and mesh with other gears to transmit torque and rotational motion. The teeth of a crown gear interlock with the teeth of the meshing gear, creating a mechanical connection. As power is applied to the crown gear, the interlocking teeth transfer torque to the meshing gear, enabling the transmission of rotational motion and power from one gear to another.

  • Force Distribution:

Crown gears contribute to the distribution of forces in a gear system. When a crown gear meshes with other gears, the load and forces acting on the gear teeth are distributed across a larger contact area. This distribution helps reduce stress and wear on individual gear teeth, ensuring smoother operation, improved durability, and efficient power transmission within the system.

  • Compatibility with Different Gears:

Crown gears are designed to be compatible with various gear types, including gears with parallel axes or bevel gears with intersecting axes. This compatibility allows crown gears to mesh smoothly with different gear configurations, enabling the transmission of motion and power between different components of a machinery setup. Crown gears serve as a critical link in transferring power and rotational motion within complex gear systems.

  • Precision and Control:

Due to their unique design and meshing characteristics, crown gears offer precise control over motion and power transmission. The interlocking teeth of crown gears ensure a firm and accurate engagement, minimizing backlash and providing reliable and controlled movement. This precision is particularly crucial in applications that require accurate positioning, such as robotics, automation, and manufacturing processes.

In summary, crown gears contribute to the transmission of motion and power by enabling directional changes, meshing and torque transfer, distributing forces, ensuring compatibility with different gear types, and providing precision and control. These contributions make crown gears vital components in various mechanical systems, allowing for efficient power transmission, accurate motion control, and reliable operation.

China manufacturer Long Service Life CZPT Gear Coupling for Cement gear patrolChina manufacturer Long Service Life CZPT Gear Coupling for Cement gear patrol
editor by CX 2024-01-08